

Velocity Template User Guide
Office of Operational Services (OOS)

04/24/2008

This document is only valid for TO-8 Release of AWIPSII.
It will have to be updated as new information comes available and with subsequent

releases. It should be considered for informational purposes only.

About this Guide ... 1
What is Velocity?.. 1
Velocity Template Language (VTL): An Introduction... 1
Templates!... 2
Comments ... 2
References... 3
Getting literal .. 7
Case Substitution .. 8
Directives .. 9
Conditionals .. 12
Loops... 15
Include... 16
Parse.. 17
Stop ... 18
Evaluate... 18
Escaping VTL Directives.. 18
VTL: Formatting Issues .. 20
Other Features and Miscellany ... 20

Math .. 20
Range Operator ... 21
Advanced Issues: Escaping and !.. 22
String Concatenation... 23

The Tornado Template Example .. 24
Header ... 24
Headline .. 24
Locations... 24
Set some text values.. 25
Expiration time.. 25
Bullets ... 25
Path Cast ... 26
Call to Action Statements ... 27
TML lines.. 29

National Weather Service - OOS

Velocity Template User’s Guide 1

About this Guide
The Velocity User Guide is intended to help template editors get acquainted with
Velocity and the syntax of its scripting language, the Velocity Template Language
(VTL). Many of the examples in this guide deal with using Velocity to embed dynamic
content into text Formatters. This document was modified from the original document
located at http://velocity.apache.org/engine/devel/user-guide.html

What is Velocity?
Velocity is a Java-based template engine. It permits the templates to reference methods
defined in Java code. Template designers may have to understand the methods, and
objects in the java code since they are used throughout the templates. Velocity separates
Java code from the warning products, making the templates more maintainable over the
long run.
The exact details of the foreach statement will be described in greater depth shortly;
what's important is the impact this short script can have on your web site. When a
customer with a penchant for Bright Red Mud logs in, and Bright Red Mud is on sale,
that is what this customer will see, prominently displayed. If another customer with a
long history of Terracotta Mud purchases logs in, the notice of a Terracotta Mud sale will
be front and center. The flexibility of Velocity is enormous and limited only by your
creativity.
Documented in the VTL Reference are the many other Velocity elements, which
collectively give you the power and flexibility you need to make your web site a web
presence. As you get more familiar with these elements, you will begin to unleash the
power of Velocity.

Velocity Template Language (VTL): An Introduction
VTL uses references to embed dynamic content in a text Product, and a variable is one
type of reference. Variables are one type of reference that can refer to something defined
in the Java code, or it can get its value from a VTL statement in the template itself. Here
is an example of a VTL statement that could be embedded in an template document:

#set($a = "National Weather Service")

This VTL statement, like all VTL statements, begins with the # character and contains a
directive: set. When the warning product is generated, the Velocity Templating Engine
will search through template to find all # characters, then determine which mark the
beginning of VTL statements, and which of the # characters that have nothing to do with
VTL.

National Weather Service - OOS

Velocity Template User’s Guide 2

The # character is followed by a directive, set. The set directive uses an expression
(enclosed in brackets) -- an equation that assigns a value to a variable. The variable is
listed on the left hand side and its value on the right hand side; the two are separated by
an = character.

In the example above, the variable is $a and the value is National Weather Service. This
variable, like all references, begins with the $ character. String values are always
enclosed in quotes, either single or double quotes. Single quotes will ensure that the
quoted value will be assigned to the reference as is. Double quotes allow you to use
velocity references and directives to interpolate, such as "National Weather Service
$office", where the $office will be replaced by the current value before that string literal
is assigned to the left hand side of the =

The following rule of thumb may be useful to better understand how Velocity works:
References begin with $ and are used to get something. Directives begin with # and
are used to do something.

In the example above, #set is used to assign a value to a variable. The variable, $a, can
then be used in the template to output "Velocity".

Templates!
Once a value has been assigned to a variable, you can reference the variable anywhere in
your template. In the following example, a value is assigned to $office and later
referenced.

THIS IS A TEST
TEST TEST TEST
#set($office = "MANHATTAN, KANSAS")
THE NATIONAL WEATHER SERVICE IN $office HAS DONE NOTHING.

The result is a text product that prints:

THIS IS A TEST
TEST TEST TEST
THE NATIONAL WEATHER SERVICE IN MANHATTAN, KANSAS HAS DONE
NOTHING.

To make statements containing VTL directives more readable, we encourage you to start
each VTL statement on a new line, although you are not required to do so. The set
directive will be revisited in greater detail later on.

Comments

National Weather Service - OOS

Velocity Template User’s Guide 3

Comments allows descriptive text to be included that is not placed into the output of the
template engine. Comments are a useful way of reminding yourself and explaining to
others what your VTL statements are doing, or any other purpose you find useful. Below
is an example of a comment in VTL.

This is a single line comment.
A single line comment begins with ## and finishes at the end of the line. If you're going
to write a few lines of commentary, there's no need to have numerous single line
comments. Multi-line comments, which begin with #* and end with *#, are available to
handle this scenario.

This is text that is outside the multi-line comment.
It will be inserted into the text product.

#*
 Thus begins a multi-line comment. The text product will not contain this text because the
Velocity Templating Engine will
 ignore it.
*#
Here is text outside the multi-line comment; it is visible.

Here are a few examples to clarify how single line and multi-line comments work:

This text is visible. ## This text is not.

This text is visible.

This text is visible.
#* This text, as part of a multi-line comment, is not visible. This text is not visible; it is
also part of the multi-line comment. This text still not visible. *#

This text is outside the comment, so it is visible.

This text is not visible.

There is a third type of comment, the VTL comment block, which may be used to store
such information as the document author and versioning information:
#**
This is a VTL comment block and may be used to store such information as the document
author and versioning information:
@author
@version 5
*#

References

National Weather Service - OOS

Velocity Template User’s Guide 4

There are three types of references in the VTL: variables, properties and methods. As a
template editor, you will have to understand the specific names of references in the
JAVA code so you can use them correctly in your templates. See the separate document
“Reference Reference” to be completed at a later date.

Everything coming to and from a reference is treated as a String object. If there is an
object that represents $wfo (such as an Integer object), then Velocity will call its
.toString() method to resolve the object into a String.

Variables

The shorthand notation of a variable consists of a leading "$" character followed by a
VTL Identifier. A VTL Identifier must start with an alphabetic character (a .. z or A .. Z).
The rest of the characters are limited to the following types of characters:

alphabetic (a .. z, A .. Z)
numeric (0 .. 9)
hyphen ("-")
underscore ("_")

Here are some examples of valid variable references in the VTL:

${officeLong}
${testMessage}
${stormType}
${pathCast}

When VTL references a variable, such as $officeLong, the variable can get its value from
either a set directive in the template, or from the Java code. For example, if the Java
variable $officeLong has the value SST at the time the template is requested, SST
replaces all instances of $officeLong in the text product. Alternatively, if I include the
statement:

#set($officeLong = "OST")

The output will be the same for all instances of $officeLong that follow this directive.

Properties

The second flavor of VTL references are properties, and properties have a distinctive
format. The shorthand notation consists of a leading $ character followed a VTL
Identifier, followed by a dot character (".") and another VTL Identifier. These are
examples of valid property references in the VTL:

${closest.roundedDistance}
${closest.roundedAzimuth}

National Weather Service - OOS

Velocity Template User’s Guide 5

Take the first example, ${closest.roundedDistance}. It can have two meanings. It can
mean, Look in the hashtable identified as closest and return the value associated with the
key roundedDistance. But ${closest.roundedDistance} can also be referring to a method
(references that refer to methods will be discussed in the next section);

${closest.roundedDistance} could be an abbreviated way of writing
${closest.roundedDistance()}. When your template is processed, Velocity will determine

which of these two possibilities makes sense, and then return the appropriate value.

Methods

A method is defined in the Java code and is capable of doing something useful, like
running a calculation or arriving at a decision. Methods are references that consist of a
leading "$" character followed a VTL Identifier, followed by a VTL Method Body. A
VTL Method Body consists of a VTL Identifier followed by an left parenthesis character
("("), followed by an optional parameter list, followed by right parenthesis character (")").
These are examples of valid method references in the VTL:

${dateUtil.format(${now}, ${timeFormat.ddhhmm})}
${mathUtil.round(${movementDirection})}

These two examples -- ${dateUtil.format()} and ${mathUtil.round()} -- may look similar
to those used in the Properties section above, ${closest.roundedDistance} and
${closest.roundedAzimuth} . If you guessed that these examples must be related some in
some fashion, you are correct!

VTL Properties can be used as a shorthand notation for VTL Methods. The Property
$closest.roundedDistance has the exact same effect as using the Method
$closest.getRoundedDistance(). It is generally preferable to use a Property when
available. The main difference between Properties and Methods is that you can specify a
parameter list to a Method.

Property Lookup Rules

As was mentioned earlier, properties often refer to methods of the parent object. Velocity
is quite clever when figuring out which method corresponds to a requested property. It
tries out different alternatives based on several established naming conventions. The
exact lookup sequence depends on whether or not the property name starts with an upper-
case letter. For lower-case names, such as $customer.address, the sequence is

getaddress()
getAddress()
get("address")
isAddress()

National Weather Service - OOS

Velocity Template User’s Guide 6

For upper-case property names like $customer.Address, it is slightly different:

getAddress()
getaddress()
get("Address")
isAddress()

Formal Reference Notation

Shorthand notation for references was used for the examples listed above, but there is
also a formal notation for references, which is demonstrated below:

${mudSlinger}
${customer.Address}
${purchase.getTotal()}

In almost all cases you will use the shorthand notation for references, but in some cases
the formal notation is required for correct processing.
Suppose you were constructing a sentence on the fly where $vice was to be used as the
base word in the noun of a sentence. The goal is to allow someone to choose the base
word and produce one of the two following results: "Jack is a pyromaniac." or "Jack is a
kleptomaniac.". Using the shorthand notation would be inadequate for this task. Consider
the following example:

Jack is a $vicemaniac.

There is ambiguity here, and Velocity assumes that $vicemaniac, not $vice, is the
Identifier that you mean to use. Finding no value for $vicemaniac, it will return
$vicemaniac. Using formal notation can resolve this problem.
Jack is a ${vice}maniac.

Now Velocity knows that $vice, not $vicemaniac, is the reference. Formal notation is
often useful when references are directly adjacent to text in a template.

Quiet Reference Notation

When Velocity encounters an undefined reference, its normal behavior is to output the
image of the reference. For example, suppose the following reference appears as part of a
VTL template.

Email Address ="$email"

When the form initially loads, the variable reference $email has no value, but you prefer
a blank text field to one with a value of "$email". Using the quiet reference notation
circumvents Velocity's normal behavior; instead of using $email in the VTL you would
use $!email. So the above example would look like the following:

National Weather Service - OOS

Velocity Template User’s Guide 7

Email Address = $!email

Now when the form is initially loaded and $email still has no value, an empty string will
be output instead of "$email".

Formal and quiet reference notation can be used together, as demonstrated below.
Emal Address=$!{email}

Getting literal
VTL uses special characters, such as $ and #, to do its work, so some added care should
be taken where using these characters in your templates. This section deals with escaping
the $ character.

Escaping Valid VTL References

Cases may arise where there is the potential for Velocity to get confused. Escaping
special characters is the best way to handle VTL's special characters in your templates,
and this can be done using the backslash (\) character.

#set($email = "my.mail@noaa.gov")

$email

If Velocity encounters a reference in your VTL template to $email, it will search the
Context for a corresponding value. Here the output will be my.mail@noaa.gov, because
$email is defined. If $email is not defined, the output will be $email.
Suppose that $email is defined (for example, if it has the value my.mail@noaa.gov), and
that you want to output $email. There are a few ways of doing this, but the simplest is to
use the escape character.

The following line defines $email in this template:
#set($email = "my.mail@noaa.gov")

$email
\$email
\\$email
\\\$email

renders as

my.mail@noaa.gov
$email
\my.mail@noaa.gov
\$email

National Weather Service - OOS

Velocity Template User’s Guide 8

Note that the \ character bind to the $ from the left. The bind-from-left rule causes
\\\$email to render as \\$email. Compare these examples to those in which $email is not
defined.

$email
\$email
\\$email
\\\$email

renders as

$email
\$email
\\$email
\\\$email

Notice Velocity handles references that are defined differently from those that have not
been defined. Here is a set directive that gives $wfo the value gibbous.

#set($wfo = "MAN")
$myWfo = $wfo

The output will be: $myWfo = MAN -- where $myWfo is output as a literal because it is
NOT defined and MAN is output in place of $wfo.

It is also possible to escape VTL directives; this is described in more detail in the
Directives section.

Case Substitution
Now that you are familiar with references, you can begin to apply them effectively in
your templates. Velocity references take advantage of some Java principles that template
designers will find easy to use. For example:

$wfo

$wfo.getRfc()
is the same as
$wfo.Rfc

$data.setUser("jon")
is the same as
#set($data.User = "jon")

$data.getRequest().getServerName()
is the same as

National Weather Service - OOS

Velocity Template User’s Guide 9

$data.Request.ServerName
is the same as
${data.Request.ServerName}

These examples illustrate alternative uses for the same references. Velocity takes
advantage of Java's introspection and bean features to resolve the reference names to both
objects in the Context as well as the objects methods. It is possible to embed and evaluate
references almost anywhere in your template.

Velocity, which is modelled on the Bean specifications defined by Sun Microsystems, is
case sensitive; however, its developers have strove to catch and correct user errors
wherever possible. When the method getWfo() is referred to in a template by $rfc.wfo,
Velocity will first try $getwfo. If this fails, it will then try $getWfo. Similarly, when a
template refers to $rfc.Wfo, Velocity will try $getWfo() first and then try getwfo().

Note: References to instance variables in a template are not resolved. Only references to
the attribute equivalents of JavaBean getter/setter methods are resolved (i.e. $wfo.Name
does resolve to the class Wfo's getName() instance method, but not to a public Name
instance variable of Wfo).

Directives
References allow template editors to generate dynamic content for text products, while
directives -- easy to use script elements that can be used to creatively manipulate the
output of Java code -- permit template editors to truly take charge of the appearance and
content of the text product output.

Directives always begin with a #. Like references, the name of the directive may be
bracketed by a { and a } symbol. This is useful with directives that are immediately
followed by text. For example the following produces an error:

#if($a==1)true enough#elseno way!#end

In such a case, use the brackets to separate #else from the rest of the line.

#if($a==1)true enough#{else}no way!#end
#set

The #set directive is used for setting the value of a reference. A value can be assigned to
either a variable reference or a property reference, and this occurs in brackets, as
demonstrated:

#set($myString = "TAKE COVER IMMEDIATELY")
#set($outText.callToAction = $myString)

National Weather Service - OOS

Velocity Template User’s Guide 10

The left hand side (LHS) of the assignment must be a variable reference or a property
reference. The right hand side (RHS) can be one of the following types:

Variable reference
String literal
Property reference
Method reference
Number literal
ArrayList
Map

These examples demonstrate each of the aforementioned types:

#set($office = $officeLong) ## variable reference
#set($office.Phone = "888-555-1212") ## string literal
#set($office.Address = $local.Address) ## property reference
#set($office.AreaCode = $local.AreaCode($code)) ## method reference
#set($office.Zip = 123) ##number literal
#set($office.List = ["ITO", $my, "ESA"]) ## ArrayList
#set($hail.Map = {"penny" : "1/2 inch","quarter" : "1 inch"}) ## Map

NOTE: For the ArrayList example the elements defined with the [..] operator are
accessible using the methods defined in the ArrayList class. So, for example, you could
access the first element above using $local.Address.get(0).

Similarly, for the Map example, the elements defined within the { } operator are
accessible using the methods defined in the Map class. So, for example, you could access
the first element above using $hail.Map.get("penny") to return a String '1/2 inch', or even
$hail.Map.penny to return the same value.

The RHS can also be a simple arithmetic expression:

#set($value = $rain + 1)
#set($value = $snow - 1)
#set($value = $rain * $snow)
#set($value = $snow / $rain)

If the RHS is a property or method reference that evaluates to null, it will not be assigned
to the LHS. Depending on how Velocity is configured, it is usually not possible to
remove an existing reference from the context via this mechanism. (Note that this can be
permitted by changing one of the Velocity configuration properties). This can be
confusing for newcomers to Velocity. For example:

#set($result = $query.criteria("spotter"))

The result of the first query is $result

National Weather Service - OOS

Velocity Template User’s Guide 11

#set($result = $query.criteria("address"))

The result of the second query is $result

If $query.criteria("spotter") returns the string "bill", and $query.criteria("address")
returns null, the above VTL will render as the following:
The result of the first query is bill

The result of the second query is bill

This tends to confuse newcomers who construct #foreach loops that attempt to #set a
reference via a property or method reference, then immediately test that reference with an
#if directive. For example:

#set($criteria = ["spotter", "address"])

#foreach($criterion in $criteria)

 #set($result = $query.criteria($criterion))

 #if($result)
 Query was successful
 #end

#end
In the above example, it would not be wise to rely on the evaluation of $result to
determine if a query was successful. After $result has been #set (added to the context), it
cannot be set back to null (removed from the context). The details of the #if and #foreach
directives are covered later in this document.
One solution to this would be to pre-set $result to false. Then if the $query.criteria() call
fails, you can check.

#set($criteria = ["spotter", "address"])

#foreach($criterion in $criteria)

 #set($result = false)
 #set($result = $query.criteria($criterion))

 #if($result)
 Query was successful
 #end

#end

National Weather Service - OOS

Velocity Template User’s Guide 12

Unlike some of the other Velocity directives, the #set directive does not have an #end
statement.
Literals
When using the #set directive, string literals that are enclosed in double quote characters
will be parsed and rendered, as shown:

#set($directoryRoot = "data/local")
#set($templateName = "index.vm")
#set($template = "$directoryRoot/$templateName")
$template

The output will be

 data/local/index.vm

However, when the string literal is enclosed in single quote characters, it will not be
parsed:

#set($wfo = "rfc")
$wfo
#set($blah = '$wfo')
$blah

This renders as:

 rfc
 $wfo

By default, this feature of using single quotes to render unparsed text is available in
Velocity. This default can be changed by editing velocity.properties such that
stringliterals.interpolate=false.
Alternately, the #literal script element allows the template designer to easily use large
chunks of uninterpreted content in VTL code. This can be especially useful in place of
escaping multiple directives.
#literal()
#foreach ($woogie in $boogie)
 nothing will happen to $woogie
#end
#end
Renders as:
#foreach ($woogie in $boogie)
 nothing will happen to $woogie
#end

Conditionals

National Weather Service - OOS

Velocity Template User’s Guide 13

If / ElseIf / Else

The #if directive in Velocity allows for text to be included when the text product is
generated, on the conditional that the if statement is true. For example:

#if($test)
 THIS IS A TEST!
#end

The variable $wfo is evaluated to determine whether it is true, which will happen under
one of two circumstances: (i) $wfo is a boolean (true/false) which has a true value, or (ii)
the value is not null. Remember that the Velocity context only contains Objects, so when
we say 'boolean', it will be represented as a Boolean (the class). This is true even for
methods that return boolean - the introspection infrastructure will return a Boolean of
the same logical value.

The content between the #if and the #end statements become the output if the evaluation
is true. In this case, if $test is true, the output will be: "THIS A TEST!". Conversely, if
$test has a null value, or if it is a boolean false, the statement evaluates as false, and there
is no output.

An #elseif or #else element can be used with an #if element. Note that the Velocity
Templating Engine will stop at the first expression that is found to be true. In the
following example, suppose that $wind has a value of 15 and $windspeed has a value of
6.

#if($wind < 10)
 LIGHT WIND
#elseif($wind == 10)
 10 MPH WIND
#elseif($windspeed == 6)
 6 MPH WIND
#else
 GREATER THAN 10 MPH WIND
#end

In this example, $wind is greater than 10, so the first two comparisons fail. Next
$windspeed is compared to 6, which is true, so the output is 6 MPH WIND.

Relational and Logical Operators

Velocity uses the equivalent operator to determine the relationships between variables.
Here is a simple example to illustrate how the equivalent operator is used.

#set ($wx = "STRONG THUNDERSTORMS")
#set ($sky = "PARTLY CLOUDY")

National Weather Service - OOS

Velocity Template User’s Guide 14

#if ($wfo == $rfc)

 In this case it's clear they aren't equivalent. So...
#else

 They are not equivalent and this will be the output.
#end

Note that the semantics of == are slightly different than Java where == can only be used
to test object equality. In Velocity the equivalent operator can be used to directly
compare numbers, strings, or objects. When the objects are of different classes, the string
representations are obtained by calling toString() for each object and then compared.

Velocity has logical AND, OR and NOT operators as well. For further information,
please see the VTL Reference Guide Below are examples demonstrating the use of the
logical AND, OR and NOT operators.

logical AND

#if($test && $practice)
 THIS IS IN TEST AND PRACTICE MODE
#end

The #if() directive will only evaluate to true if both $test and $practice are true. If $test is
false, the expression will evaluate to false; $practice will not be evaluated. If $test is
true, the Velocity Templating Engine will then check the value of $practice; if $practoce
is true, then the entire expression is true and THIS IS IN TEST AND PRACTICE
MODE becomes the output. If $practice is false, then there will be no output as the entire
expression is false.

Logical OR operators work the same way, except only one of the references need
evaluate to true in order for the entire expression to be considered true. Consider the
following example.

logical OR

#if($test || $practice)
 Test OR Practice I don’t know!
#end

If $test is true, the Velocity Templating Engine has no need to look at $practice; whether
$practice is true or false, the expression will be true, and Test OR Practice I don’t
know! will be output. If $test is false, however, $practice must be checked. In this case,
if $practice is also false, the expression evaluates to false and there is no output. On the

National Weather Service - OOS

Velocity Template User’s Guide 15

other hand, if $practice is true, then the entire expression is true, and the output is Test
OR Practice I don’t know!

With logical NOT operators, there is only one argument :

##logical NOT

#if(!$test)
 THIS IS NOT A TEST
#end

Here, the if $test is true, then !$test evaluates to false, and there is no output. If $test is
false, then !$test evaluates to true and THIS IS NOT A TEST will be output. Be careful
not to confuse this with the quiet reference $!test which is something altogether different.
There are text versions of all logical operators, including eq, ne, and, or, not, gt, ge, lt,
and le.

One more useful note. When you wish to include text immediately following a #else
directive you will need to use curly brackets immediately surrounding the directive to
differentiate it from the following text. (Any directive can be delimited by curly brackets,
although this is most useful for #else).

#if($wfo == $rfc)it's true!#{else}it's not!#end

Loops
Foreach Loop

The #foreach element allows for looping. For example:

PRODUCT LIST = :
#foreach($product in $allProducts)
 PRODUCT : $product
#end

This #foreach loop causes the $allProducts list (the object) to be looped over for all of
the products (targets) in the list. Each time through the loop, the value from $allProducts
is placed into the $product variable.

The contents of the $allProducts variable is a Vector, a Hashtable or an Array. The value
assigned to the $product variable is a Java Object and can be referenced from a variable
as such. For example, if $product was really a Product class in Java, its name could be
retrieved by referencing the $product.Name method (ie: $Product.getName()).

Lets say that $allProducts is a Hashtable. If you wanted to retrieve the key values for the
Hashtable as well as the objects within the Hashtable, you can use code like this:

National Weather Service - OOS

Velocity Template User’s Guide 16

#foreach($key in $allProducts.keySet())
 Key: $key -> Value: $allProducts.get($key)
#end

Velocity provides an easy way to get the loop counter so that you can do something like
the following:

#foreach($county in $countyList)
 $velocityCount : $county.Name
#end

The default name for the loop counter variable reference, which is specified in the
velocity.properties file, is $velocityCount. By default the counter starts at 1, but this can
be set to either 0 or 1 in the velocity.properties file. Here's what the loop counter
properties section of the velocity.properties file appears:

Default name of the loop counter
variable reference.
directive.foreach.counter.name = velocityCount

Default starting value of the loop
counter variable reference.
directive.foreach.counter.initial.value = 1

It's possible to set a maximum allowed number of times that a loop may be executed. By
default there is no max (indicated by a value of 0 or less), but this can be set to an
arbitrary number in the velocity.properties file. This is useful as a fail-safe.

The maximum allowed number of loops.
directive.foreach.maxloops = -1

Include

The #include script element allows the template designer to import a local file, which is
then inserted into the location where the #include directive is defined. The contents of the
file are not rendered through the template engine. For security reasons, the file to be
included may only be under TEMPLATE_ROOT.

#include("one.txt")

The file to which the #include directive refers is enclosed in quotes. If more than one file
will be included, they should be separated by commas.

National Weather Service - OOS

Velocity Template User’s Guide 17

#include("one.txt","two.txt","three.txt")

The file being included need not be referenced by name; in fact, it is often preferable to
use a variable instead of a filename. This could be useful for targeting output according to
criteria determined when the template is evaluated. Here is an example showing both a
filename and a variable.

#include("greetings.txt", $workfile)

Parse
The #parse script element allows the template designer to import a local file that contains
VTL. Velocity will parse the VTL and render the template specified.

#parse("me.vm")

Like the #include directive, #parse can take a variable rather than a template. Any
templates to which #parse refers must be included under TEMPLATE_ROOT. Unlike
the #include directive, #parse will only take a single argument.

VTL templates can have #parse statements referring to templates that in turn have #parse
statements. By default set to 10, the directive.parse.max.depth line of the
velocity.properties allows users to customize maximum number of #parse referrals
that can occur from a single template. (Note: If the directive.parse.max.depth property is
absent from the velocity.properties file, Velocity will set this default to 10.)

Recursion is permitted, for example, if the template dofoo.vm contains the following
lines:

Count down.
#set($count = 8)
#parse("parsefoo.vm")

All done with dofoo.vm!

It would reference the template parsefoo.vm, which might contain the following VTL:

$count
#set($count = $count - 1)
#if($count > 0)
 #parse("parsefoo.vm")
#else
 All done with parsefoo.vm!
#end

National Weather Service - OOS

Velocity Template User’s Guide 18

After "Count down." is displayed, Velocity passes through parsefoo.vm, counting down
from 8. When the count reaches 0, it will display the "All done with parsefoo.vm!"
message. At this point, Velocity will return to dofoo.vm and output the "All done with
dofoo.vm!" message.

Stop

The #stop script element prevents any further text or references in the page from being
rendered. This is useful for debugging purposes.

Evaluate
The #evaluate directive can be used to dynamically evaluate VTL. This allows the
template to evaluate a string that is created at render time. Such a string might be used to
internationalize the template or to include parts of a template from a database.

The example below will display abc.

#set($source1 = "abc")
#set($select = "1")
#set($dynamicsource = "$source$select")
#evaluate($dynamicsource)

Escaping VTL Directives
VTL directives can be escaped with the backslash character ("\") in a manner similar to
valid VTL references.

#include("a.txt") renders as <contents of a.txt>
#include("a.txt")

\#include("a.txt") renders as #include("a.txt")
\#include("a.txt")

\\#include ("a.txt") renders as \<contents of a.txt>
\\#include ("a.txt")

Extra care should be taken when escaping VTL directives that contain multiple script
elements in a single directive (such as in an if-else-end statements). Here is a typical VTL
if-statement:

#if($test)
 THIS IS A TEST
#end

National Weather Service - OOS

Velocity Template User’s Guide 19

If $test is true, the output is

THIS IS A TEST

If $test is false, there is no output. Escaping script elements alters the output. Consider
the following case:

\#if($test)
 THIS IS A TEST
\#end

Whether $test is true or false, the output will be

 #if($ test)
 THIS IS A TEST
 #end

In fact, because all script elements are escaped, $test is never evaluated for its boolean
value. Suppose backslashes precede script elements that are legitimately escaped:

\\#if($test)
 THIS IS A TEST
\\#end

In this case, if $test is true, the output is

\ THIS IS A TEST
\

To understand this, note that the #if(arg) when ended by a newline (return) will omit
the newline from the output. Therefore, the body of the #if() block follows the first '\',
rendered from the '\\' preceding the #if(). The last \ is on a different line than the text
because there is a newline after 'TEST', so the final \\, preceding the #end is part of the
body of the block.

If $test is false, the output is
\

Note that things start to break if script elements are not properly escaped.

\\\#if($test)
 THIS IS A TEST
\\#end

National Weather Service - OOS

Velocity Template User’s Guide 20

Here the #if is escaped, but there is an #end remaining; having too many endings will
cause a parsing error.

VTL: Formatting Issues
Although VTL in this user guide is often displayed with newlines and whitespaces, the
VTL shown below

#set($cities = ["Munetaka","Koreyasu","Hisakira","Morikune"])
#foreach($school in $cities)
 $school
#end

is equally valid as the following snippet that Geir Magnusson Jr. posted to the Velocity
user mailing list to illustrate a completely unrelated point:

Send #set($text=["$10 and ","a pie"])#foreach($a in $text)$a#end please.

Velocity's behaviour is to gobble up excess whitespace. The preceding directive can be
written as:

Send me
#set($text = ["$10 and ","a pie"])
#foreach($a in $text)
$a
#end
please.
or as
Send me
#set($text = ["$10 and ","a pie"])
 #foreach ($a in $text)$a
 #end please.

In each case the output will be the same.

Other Features and Miscellany

Math

Velocity has a handful of built-in mathematical functions that can be used in templates
with the set directive. The following equations are examples of addition, subtraction,
multiplication and division, respectively:

#set($total = $rain + 3)
#set($total = $rain - 4)

National Weather Service - OOS

Velocity Template User’s Guide 21

#set($total = $snow * 6)
#set($total = $sleet / 2)

When a division operation is performed between two integers, the result will be an
integer. Any remainder can be obtained by using the modulus (%) operator.

#set($total = $snow % 5)

Range Operator

The range operator can be used in conjunction with #set and #foreach statements. Useful
for its ability to produce an object array containing integers, the range operator has the
following construction:

[n..m]

Both n and m must either be or produce integers. Whether m is greater than or less than n
will not matter; in this case the range will simply count down. Examples showing the use
of the range operator as provided below:

First example:

#foreach($amount in [1..5])
$amount
#end

Second example:

#foreach($temp in [2..-2])
$temp
#end

Third example:

#set($arr = [0..1])
#foreach($i in $arr)
$i
#end

Fourth example:

[1..3]
Produces the following output:
First example:
1 2 3 4 5

National Weather Service - OOS

Velocity Template User’s Guide 22

Second example:

2 1 0 -1 -2

Third example:

0 1

Fourth example:

[1..3]

Note that the range operator only produces the array when used in conjunction with #set
and #foreach directives, as demonstrated in the fourth example.
Web page designers concerned with making tables a standard size, but where some will
not have enough data to fill the table, will find the range operator particularly useful.

Advanced Issues: Escaping and !

When a reference is silenced with the ! character and the ! character preceded by an \
escape character, the reference is handled in a special way. Note the differences between
regular escaping, and the special case where \ precedes ! follows it:
#set($wfo = "rfc")

$\!wfo
$\!{wfo}
$\\!wfo
$\\\!wfo

This renders as:

$!wfo
$!{wfo}
$\!wfo
$\\!wfo

Contrast this with regular escaping, where \ precedes $:

\$wfo
\$!wfo
\$!{wfo}
\\$!{wfo}

This renders as:

$wfo

National Weather Service - OOS

Velocity Template User’s Guide 23

$!wfo
$!{wfo}
\rfc

String Concatenation

A common question that developers ask is How do I do String concatenation? Is there
any analogue to the '+' operator in Java?.

To do concatenation of references in VTL, you just have to 'put them together'. The
context of where you want to put them together does matter, so we will illustrate with
some examples.

In the regular 'schmoo' of a template (when you are mixing it in with regular content) :

 #set($size = "Big")
 #set($name = "Hail")

 The danger is $size$name.

and the output will render as 'The clock is BigHail'. For more interesting cases, such as
when you want to concatenate strings to pass to a method, or to set a new reference, just
do

 #set($size = "Big")
 #set($name = "Hail")

 #set($danger = "$size$name")

 The danger is $danger.

Which will result in the same output. As a final example, when you want to mix in 'static'
strings with your references, you may need to use 'formal references' :

 #set($size = "Big")
 #set($name = "Hail")

 #set($danger = "${size}HUGE$name")

 The danger is $danger.

Now the output is 'The clock is BigHUGEHail'. The formal notation is needed so the
parser knows you mean to use the reference '$size' versus '$sizeHUGE' which it would if
the '{}' weren't there.

National Weather Service - OOS

Velocity Template User’s Guide 24

The Tornado Template Example
Following is the tornado template broken down into sections with descriptions to provide
a better understanding of the templates.

Header

ZCZC ${tornadoId} DEF
TTAA00 ${wmoValue} ${dateUtil.format(${now}, ${timeFormat.ddhhmm})}
/O.NEW.${vtecOffice}.TO.W.0001.${dateUtil.format(${start},
${timeFormat.ymdthmz})}-${dateUtil.format(${expire},
${timeFormat.ymdthmz})}/

Headline

BULLETIN - EAS ACTIVATION REQUESTED
#if(${mode}=="test" || ${mode}=="practice")
TEST...TORNADO WARNING...TEST
#else
TORNADO WARNING
#end
<!-- NATIONAL WEATHER SERVICE ${officeShort} -->
${officeLong}
${dateUtil.formatLocal(${now}, ${timeFormat.header})}

#if(${mode}=="test" || ${mode}=="practice")
#set($testMessage = "THIS IS A TEST MESSAGE. ")
...THIS MESSAGE IS FOR TEST PURPOSES ONLY...
#else
#set($testMessage = "")
#end

Locations

${officeLong} HAS ISSUED A

* ${testMessage}TORNADO WARNING FOR...
#foreach (${area} in ${areas})
 ##
#if(${area.partOfArea})
#areaFormat(${area.partOfArea} 0) ##
#end
${area.name} ${area.areaNotation} IN
#areaFormat(${area.partOfParentRegion} 0) ${area.parentRegion}...
#if(${list.size($area.points)} > 0)
#if(${list.size($area.points)} > 1)

National Weather Service - OOS

Velocity Template User’s Guide 25

 THIS INCLUDES THE CITIES OF... #foreach (${city} in
${area.points})${city}... #end

#else
 THIS INCLUDES THE CITY OF ${list.get(${area.points},0)}
#end
#end
#end

Set some text values

#set($reportType1 = "TORNADO")
#set($reportType2 = "THIS TORNADO WAS")
#if(${stormType} == "line")
#set($reportType1 = "LINE OF TORNADO PRODUCING STORMS ")
#set($reportType2 = "THESE TORNADO PRODUCING STORMS WERE")
#end

Expiration time

* UNTIL ${dateUtil.formatLocal(${expire}, ${timeFormat.clock}, 15)}

Bullets

#set ($report = "")
#if(${list.contains($bullets, "doppler")})
 #if(${stormType} == "line")
 #set ($report = "NATIONAL WEATHER SERVICE DOPPLER RADAR INDICATED A
LINE OF SEVERE THUNDERSTORMS CAPABLE OF PRODUCING A TORNADO")
 #else
 #set ($report = "NATIONAL WEATHER SERVICE DOPPLER RADAR INDICATED A
SEVERE THUNDERSTORM CAPABLE OF PRODUCING A TORNADO")
 #end
#end
#if(${list.contains($bullets, "confirmedDoppler")})
 #set ($report = "NATIONAL WEATHER SERVICE DOPPLER RADAR WAS TRACKING
A TORNADO")
#end
#if(${list.contains($bullets, "confirmedLarge")})
 #set ($report = "NATIONAL WEATHER SERVICE DOPPLER RADAR WAS TRACKING
A LARGE AND EXTREMELY DANGEROUS TORNADO")
#end
#if(${list.contains($bullets, "spotter")})
 #set ($report = "TRAINED WEATHER SPOTTERS REPORTED A TORNADO")
#end
#if(${list.contains($bullets, "lawEnforcement")})
 #set ($report = "LOCAL LAW ENFORCEMENT REPORTED A TORNADO")
#end
#if(${list.contains($bullets, "public")})
 #set ($report = "THE PUBLIC REPORTED A TORNADO")
#end
#if(${list.contains($bullets, "spotterFunnelCloud")})

National Weather Service - OOS

Velocity Template User’s Guide 26

 #set ($report = "TRAINED WEATHER SPOTTERS REPORTED A FUNNEL CLOUD")
#end

Path Cast

#set($closest = ${list.get($closestPoints, 0)})
#set($secondary = ${list.get($closestPoints, 1)})
* ${testMessage}AT ${dateUtil.formatLocal(${event},
${timeFormat.clock})}...${report} ##
#if($closest.roundedDistance <= 4)
OVER ##
#else
${closest.roundedDistance} MILES #direction(${closest.roundedAzimuth})
OF ##
#end
${closest.name}...OR ${secondary.roundedDistance} MILES
#direction(${secondary.roundedAzimuth}) OF ${secondary.name}##
#if($movementInMph < 2.5)

${reportType2} NEARLY STATIONARY.
#else
...MOVING #direction(${movementDirectionRounded}) AT
${mathUtil.round(${movementInMph})} MPH.
#end

Determine if the pathcast goes over only rural areas
#set($ruralOnly = 1)
#foreach(${pc} in ${pathCast})
#if(${pc.points})
#set($ruralOnly = 0)
#end
#end
#set($numOtherCities = ${list.size($otherPoints)})

#if(${pathCast} && ${ruralOnly} == 0)
#if(${stormType} == "line")
* ${testMessage}THE TORNADO PRODUCING STORMS WILL BE NEAR...
#else
* ${testMessage}THE TORNADO WILL BE NEAR...
#end
#set($numRural = 0)## indicates the number of rural points
#foreach (${pc} in ${pathCast})
#if(${pc.points})
#set($numRural = 0)
#set($numCities = ${list.size($pc.points)})
#set($count = 0)
 ##
#foreach (${city} in ${pc.points})
#if(${city.roundedDistance} < 3)
close enough to not need azran, considered OVER the area
${city.name}##
#else
needs azran information
${city.roundedDistance} MILES #direction(${city.roundedAzimuth}) OF
${city.name}##

National Weather Service - OOS

Velocity Template User’s Guide 27

#end
#set($count = $count + 1)
#if($count == $numCities - 1)
 AND ##
#elseif($count < $numCities)
...##
#end
#end
 BY ${dateUtil.formatLocal(${pc.time}, ${timeFormat.clock})}...
#else## Handle the rural cases
#set($numRural = $numRural + 1)
#if($numRural > 2)
 RURAL ${pc.area} ${pc.areaNotation} AT
${dateUtil.formatLocal(${pc.time}, ${timeFormat.clock})}...
#set($numRural = 0)
#end
#end
#end
#elseif(${otherPoints} && ${numOtherCities} > 0)
* ${testMessage}OTHER LOCATIONS IN THE WARNING INCLUDE BUT ARE NOT
LIMITED TO
#set($count = 0)
 ##
#foreach(${point} in ${otherPoints})
#set($count = $count + 1)
${point}##
#if($count == $numOtherCities - 1)
 AND ##
#elseif($count < $numOtherCities)
...##
#end
#end
#else
* ${testMessage}THE ${reportType1} WILL OTHERWISE REMAIN OVER MAINLY
RURAL AREAS OF THE INDICATED COUNTIES.
#end

Call to Action Statements

#if(${list.contains($bullets, "hailWinds")})
${testMessage}IN ADDITION TO THE TORNADO...THIS STORM IS CAPABLE OF
PRODUCING !**EDIT SIZE**! SIZE HAIL AND DESTRUCTIVE STRAIGHT LINE
WINDS.

#end
#if(${list.contains($bullets, "severeDoppler")})
${testMessage}WHEN A TORNADO WARNING IS ISSUED BASED ON DOPPLER
RADAR...IT MEANS THAT STRONG ROTATION HAS BEEN DETECTED IN THE STORM.
A TORNADO MAY ALREADY BE ON THE GROUND...OR IS EXPECTED TO DEVELOP
SHORTLY. IF YOU ARE IN THE PATH OF THIS DANGEROUS STORM...MOVE INDOORS
AND TO THE LOWEST LEVEL OF THE BUILDING. STAY AWAY FROM WINDOWS. IF
DRIVING...DO NOT SEEK SHELTER UNDER A HIGHWAY OVERPASS.

#end
#if(${list.contains($bullets, "severe")})

National Weather Service - OOS

Velocity Template User’s Guide 28

${testMessage}THIS IS AN EXTREMELY DANGEROUS AND LIFE THREATENING
SITUATION. THIS STORM IS CAPABLE OF PRODUCING STRONG TO VIOLENT
TORNADOES. IF YOU ARE IN THE PATH OF THIS TORNADO...TAKE COVER
IMMEDIATELY!

#end
#if(${list.contains($bullets, "overpasses")})
${testMessage}DO NOT USE HIGHWAY OVERPASSES FOR SHELTER. OVERPASSES DO
NOT PROVIDE PROTECTION FROM TORNADIC WINDS. VEHICLES STOPPED UNDER
BRIDGES BLOCK TRAFFIC AND PREVENT PEOPLE FROM GETTING OUT OF THE
STORM'S PATH AND TO SHELTER. IF YOU CANNOT DRIVE AWAY FROM THE
TORNADO...GET OUT OF YOUR VEHICLE AND LIE FLAT IN A DITCH AS A LAST
RESORT.

#end
#if(${list.contains($bullets, "outside")})
${testMessage}IF YOU ARE CAUGHT OUTSIDE...SEEK SHELTER IN A NEARBY
REINFORCED BUILDING. AS A LAST RESORT...SEEK SHELTER IN A
CULVERT...DITCH OR LOW SPOT AND COVER YOUR HEAD WITH YOUR HANDS.

#end
#if(${list.contains($bullets, "outrun")})
${testMessage}DO NOT USE YOUR CAR TO TRY TO OUTRUN A TORNADO. CARS ARE
EASILY TOSSED AROUND BY TORNADO WINDS. IF YOU ARE CAUGHT IN THE PATH
OF A TORNADO...LEAVE THE CAR AND GO TO A STRONG BUILDING. IF NO SAFE
STRUCTURE IS NEARBY...SEEK SHELTER IN A DITCH OR LOW SPOT AND COVER
YOUR HEAD.

#end
#if(${list.contains($bullets, "mobileHome")})
${testMessage}IF IN MOBILE HOMES OR VEHICLES...EVACUATE THEM AND GET
INSIDE A STURDY SHELTER. IF NO SHELTER IS AVAILABLE... LIE FLAT IN
THE NEAREST DITCH OR OTHER LOW SPOT AND COVER YOUR HEAD WITH YOUR
HANDS.

#end
#if(${list.contains($bullets, "rainWrapped")})
${testMessage}HEAVY RAINFALL MAY OBSCURE THIS TORNADO. TAKE COVER NOW!
IF YOU WAIT TO SEE OR HEAR IT COMING...IT MAY BE TOO LATE TO GET TO A
SAFE PLACE.
#end
#if(${list.contains($bullets, "enterReport")})
!** Enter Any Storm Reports Here **!
#end
#if(${list.contains($bullets, "safePlaces")})
${testMessage}THE SAFEST PLACE TO BE DURING A TORNADO IS IN A BASEMENT.
GET UNDER A WORKBENCH OR OTHER PIECE OF STURDY FURNITURE. IF NO
BASEMENT IS AVAILABLE...SEEK SHELTER ON THE LOWEST FLOOR OF THE
BUILDING IN AN INTERIOR HALLWAY OR ROOM SUCH AS A CLOSET. USE BLANKETS
OR PILLOWS TO COVER YOUR BODY AND ALWAYS STAY AWAY FROM WINDOWS.

IF IN MOBILE HOMES OR VEHICLES...EVACUATE THEM AND GET INSIDE A
SUBSTANTIAL SHELTER. IF NO SHELTER IS AVAILABLE... LIE FLAT IN THE
NEAREST DITCH OR OTHER LOW SPOT AND COVER YOUR HEAD WITH YOUR HANDS.
#end

#if(${mode}=="test" || ${mode}=="practice")

National Weather Service - OOS

Velocity Template User’s Guide 29

THIS IS A TEST MESSAGE. DO NOT TAKE ACTION BASED ON THIS MESSAGE.
#end

TML lines

LAT...LON ##
#foreach(${coord} in ${areaPoly})
#llFormat(${coord.y}) #llFormat(${coord.x}) ##
#end

TIME...MOT...LOC ##
${dateUtil.format(${event}, ${timeFormat.time})}Z ##
${mathUtil.round(${movementDirection})}DEG ##
${mathUtil.round(${movementInKnots})}KT ##
#llFormat(${eventLocation.y}) #llFormat(${eventLocation.x})

$$
!**NAME/INITIALS**!

REFFERENCE: The Apache Software Foundation Last Published: 2007-05-02 07:39:31

